A-Site mRNA Cleavage Is Not Required for tmRNA-Mediated ssrA-Peptide Tagging

نویسندگان

  • Brian D. Janssen
  • Fernando Garza-Sánchez
  • Christopher S. Hayes
چکیده

In Escherichia coli, prolonged translational arrest allows mRNA degradation into the A site of stalled ribosomes. The enzyme that cleaves the A-site codon is not known, but its activity requires RNase II to degrade mRNA downstream of the ribosome. This A-site mRNA cleavage process is thought to function in translation quality control because stalled ribosomes are recycled from A-site truncated transcripts by the tmRNA-SmpB "ribosome rescue" system. During rescue, the tmRNA-encoded ssrA peptide is added to the nascent chain, thereby targeting the tagged protein for degradation after release from the ribosome. Here, we examine the influence of A-site mRNA cleavage upon tmRNA-SmpB activity. Using a model transcript that undergoes stop-codon cleavage in response to inefficient translation termination, we quantify ssrA-peptide tagging of the encoded protein in cells that contain (rnb(+)) or lack (Δrnb) RNase II. A-site mRNA cleavage is reduced approximately three-fold in Δrnb backgrounds, but the efficiency of ssrA-tagging is identical to that of rnb(+) cells. Additionally, pulse-chase analysis demonstrates that paused ribosomes recycle from the test transcripts at similar rates in rnb(+) and Δrnb cells. Together, these results indicate that A-site truncated transcripts are not required for tmRNA-SmpB-mediated ribosome rescue and suggest that A-site mRNA cleavage process may play a role in other recycling pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RIBOSOMAL PROTEIN S12 AND AMINOGLYCOSIDE ANTIBIOTICS MODULATE A-SITE mRNA CLEAVAGE AND TRANSFER-MESSENGER RNA (tmRNA) ACTIVITY IN ESCHERICHIA COLI*

RIBOSOMAL PROTEIN S12 AND AMINOGLYCOSIDE ANTIBIOTICS MODULATE A-SITE mRNA CLEAVAGE AND TRANSFER-MESSENGER RNA (tmRNA) ACTIVITY IN ESCHERICHIA COLI* Laura E. Holberger and Christopher S. Hayes From the Department of Molecular, Cellular, and Developmental Biology, and the Biomolecular Science and Engineering Program University of California, Santa Barbara, Santa Barbara, CA 93106-9610 Running tit...

متن کامل

Ribosomal protein S12 and aminoglycoside antibiotics modulate A-site mRNA cleavage and transfer-messenger RNA activity in Escherichia coli.

Translational pausing in Escherichia coli can lead to mRNA cleavage within the ribosomal A-site. A-site mRNA cleavage is thought to facilitate transfer-messenger RNA (tmRNA).SmpB- mediated recycling of stalled ribosome complexes. Here, we demonstrate that the aminoglycosides paromomycin and streptomycin inhibit A-site cleavage of stop codons during inefficient translation termination. Aminoglyc...

متن کامل

SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA).

In bacteria, SsrA RNA recognizes ribosomes stalled on defective messages and acts as a tRNA and mRNA to mediate the addition of a short peptide tag to the C-terminus of the partially synthesized nascent polypeptide chain. The SsrA-tagged protein is then degraded by C-terminal-specific proteases. SmpB, a unique RNA-binding protein that is conserved throughout the bacterial kingdom, is shown here...

متن کامل

Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli.

The SsrA or tmRNA quality control system intervenes when ribosomes stall on mRNAs and directs the addition of a C-terminal peptide tag that targets the modified polypeptide for degradation. Although hundreds of SsrA-tagged proteins can be detected in cells when degradation is prevented, most of these species have not been identified. Consequently, the mRNA sequence determinants that cause ribos...

متن کامل

The SmpB-tmRNA Tagging System Plays Important Roles in Streptomyces coelicolor Growth and Development

The ssrA gene encodes tmRNA that, together with a specialized tmRNA-binding protein, SmpB, forms part of a ribonucleoprotein complex, provides a template for the resumption of translation elongation, subsequent termination and recycling of stalled ribosomes. In addition, the mRNA-like domain of tmRNA encodes a peptide that tags polypeptides derived from stalled ribosomes for degradation. Strept...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013